

EP063106BK001-TDS

COCOON ABS-Birch(CF)

It is an ABS chopped carbon fiber composite material that achieves a precise balance in mechanical properties, printability, and surface quality. It features high strength, high rigidity, and the ability to suppress warping. Printed products are robust and durable with a matte, clean finish. Its excellent mechanical properties and outstanding surface quality make it suitable for 3D printing applications that require both strength and stiffness, such as tooling fixtures, manufacturing jigs, casings, and structural components.

Part 1 Injection-Molded Specimen Performance

Testing Items	Testing Conditions	Testing Methods	Units	Typical Values
Physical Properties				
Density	23°C	GB/T 1033	g/cm3	1.06
Melt Volume Rate	220°C, 10kg	GB/T 3682	g/10min	20
Mechanical Properties				
Tensile Strength	5mm/min	GB/T 1040.2	MPa	55
Elongation @ Break	5mm/min	GB/T 1040.2	%	5
Flexural Strength	2mm/min	GB/T 9341	MPa	80
Flexural Modulus	2mm/min	GB/T 9341	MPa	4000
Izod Impact Strength	2.75J	GB/T 1843	kJ/m2	8
Thermal Property				
HDT	0.45MPa	GB/T 1634	°C	95

Note: The typical physical properties are not intended for use as sales specifications.

Part 2 Printed Specimen Performance

Testing Items	Testing Conditions	Testing Methods	Units	Typical Values
Mechanical Properties				
Tensile Strength(X-Y)	50mm/min	GB/T 1040.2	MPa	55
Tensile Strength(Z)	50mm/min	GB/T 1040.2	MPa	27
Flexural Strength	2mm/min	GB/T 9341	MPa	78
Flexural Modulus	2mm/min	GB/T 9341	MPa	4250
Impact Strength, Notched	2.75J	GB/T 1843	kJ/m2	5

Note: All specimens are printed under the following conditions: nozzle temperature = 280° C, printing speed = 150 mm/s, build plate temperature= 95° C infill = 100%, nozzle diameter = 0.4mm.

Printing Path Direction of Specimen (Z)

Printing Path Direction of Specimen (X-Y)

Part 3 Printing Guidelines

Parameters	Settings		
Nozzle Temperature	270-290°C		
Build Plate Temp.	90-100°C		
Build Plate Material	Glass、PEI、Steel Spring Build Plate		
Bottom Layer Printing Temp.	/		
Enclosed-chamber Printing	Support open printing / Enclosed printing provides better results		
Print Speed	100-200mm/s		
Drying recommendations	60 °C in a hot air dryer for 4hours		

Disclaimer:

The values provided in this data sheet are for reference and comparison purposes only. They should not be used for design specifications or quality control. Actual values may vary depending on printing conditions. The ultimate performance of printed parts depends not only on the material but also on the part design, environmental conditions, and printing conditions. The product specifications are subject to change without notice.

Each user is responsible for determining the safety, legality, technical suitability, and disposal/recycling of the intended use. Unless otherwise stated, POLYFUL makes no warranties of any kind, express or implied, regarding the suitability of its materials for any use or application. POLYFUL shall not be liable for any damages, injuries, or losses caused by the use of POLYFUL materials in any application.